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ABSTRACT

The computational uncertainty principle states that the numerical computation of nonlinear ordinary
differential equations (ODEs) should use appropriately sized time steps to obtain reliable solutions.
However, the interval of effective step size (IES) has not been thoroughly explored theoretically. In
this paper, by using a general estimation for the total error of the numerical solutions of ODEs, a
method is proposed for determining an approximate IES by translating the functions for truncation
and rounding errors. It also illustrates this process with an example. Moreover, the relationship
between the IES and its approximation is found, and the relative error of the approximation with
respect to the IES is given. In addition, variation in the IES with increasing integration time is studied,
which can provide an explanation for the observed numerical results. The findings contribute to

computational step-size choice for reliable numerical solutions.
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1. Introduction

Many works have shown the time-step sensibility of non-
linear dynamical systems. Li, Zeng, and Chou (2000, 2001)
and Li (2000) proposed the computational uncertainty
principle (CUP) for nonlinear systems of ordinary differ-
ential equations (ODEs) under a finite machine precision.
The CUP states that using different time-step sizes usually
results in different effective computation times (ECTs) and
that the maximal ECT (MECT), achieved using the opti-
mal step size (OS), gives the best result. Wang and Huang
(2006) focused on Lorenz systems, and reported that the
maximum prediction time sensitively relies on the time-
step size under certain conditions. Teixeira, Reynolds, and
Judd (2007) found the time-step size to affect not only
Lorenz systems but also a quasi-geostrophic model. Liu
etal. (2015) studied the Global/Regional Assimilation and
Prediction System mesoscale numerical forecast, and gave
a preliminary explanation of the applicability of OS theory
to complicated partial differential equations (PDEs).

The CUP presented by Li, Zeng, and Chou (2000,
2001) theoretically explained the time-step sensibility
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of nonlinear ODEs, which has been cited by many other
researches (Hu and Chou 2004; Li and Wang 2008; Liu et al.
2015;Wang, Li,and Li 2012; Wang, Liu, and Li 2014). In par-
ticular, based on the CUP, Wang, Li, and Li (2012) deduced
a general ECT function of step size, which explained the
experimental formulae proposed by Teixeira, Reynolds,
and Judd (2007).

Through a large number of numerical experiments,
Li, Zeng, and Chou (2000) introduced the concept of the
interval of effective step size (IES) of ODEs. Presenting the
IES profiles obtained from numerical results (Figure 1), Li,
Zeng, and Chou (2000) suggested that numerical solu-
tions are reliable when step sizes belong to the IES. In such
cases, if we know the theoretical formulae of lower and
upper bounds of the IES corresponding to a certain error
tolerance, it will guide the choices of effective step sizes
in computations. However, there has been little relevant
prior research in this regard.

This paper explores the IES for nonlinear ODEs based
on the studies of Li, Zeng, and Chou (2000, 2001). Let U=

lh hr,z] (h,. < hr,z) denote the IES atintegral time t undera

t1’ t1 =
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Figure 1. IES profiles obtained using the optimal searching
method, when computing the solutions of the x-component of
the Lorenz equation using the fourth-order Runge—Kutta method
for the initial value (5, 5, 10) and r = 28 and for 121 different step
sizes in the range 1077-107". Source: Li, Zeng, and Chou (2000,
Plate I-2(c)).

Notes: Here, the step size h is plotted as a logarithm (to base 10) and time is

non-dimensional. The grey solid line is for machine single precision and the
black dotted line is for double precision.

given error tolerance 6.To obtain U,, itis necessary to give
a general formula of the numerical error E(t, h) for the solu-
tions of nonlinear ODEs. In numerical calculation, E(t, h) is
usually composed of three parts: truncation error, which is
caused by differential equation discretization (Gear 1971;
Stoer and Bulirsch 1993); round-off error, which is due to
limitations of computer precision (Li, Zeng, and Chou 2000,
2001); and initial error (Ding and Li 2008a, 2008b, 2012).
From Li, Zeng, and Chou (2001, Equations (60) and (83)),
it can be shown that

IE(t, h)]| < C()[E, (h) + Ey(h) + Ney |, (1)

where E,(h) = C1h‘°~5 is relevant to the round-off error;
E,(h) = C,h* is relevant to the truncation error, and p is
the order of the numerical method; €o) is relevant to the

initial error, and

C(t) = eqm_m/ \/EL (2)

The way to estimate C, and C,, and details of other param-
eters, are givenin Li, Zeng, and Chou (2001, Equations (60)
and (83)). Letting 5, = 8/C(t)-Ne, and E(h) = E,(h+E,(h),
Equation (1) indicates that hm and ht(2 should be the solu-
tions of the equation

Ethy =6, 3)

For a fixed value of t, Equation (3) is a nonlinear equation
associated with h, which can be solved numerically to
obtain approximate values of h,, and h,, by methods such
as fixed-point iteration and Newtonian iteration (Suli and
Mayers 2003); however, it is usually hard to provide func-
tion expressions for h,, and h,, with these methods. This
article aims to derive explicit formulae for ht’1 and hr,z' o)
as to give a general approximate explicit expression for U,.

2. Method for determining U:‘, an
approximation of U,

First, defining (hcmss, E...) as the intersection of the func-

tions E,(h) and E, (h), one gets

hcross = C]P;°-5’ and Ecross = CZCSGIS’ (4)
where C,,=C/C,. Besides, Li, Zeng, and Chou (2000, 2001)
stated that E(h) reaches its minimum Ein when the step
size h takes the value of OS, and when the OS denoted by
H, there are

H= & m,andE. =CQR2p+1) & m. (5)
2p min 2 zp

Then, we simultaneously translate the functions £, (h) and
E,(h) so as to move the coordinates of their intersection
from (h_,.. E....) to the lowest point (H, E_ ) of E(h). Let
Ey (h) and E; (h) denote the translated functions, which
areEy (h)=(1+1/2p)E,(h),and E; (h) = (2p + 1)E,(h). Finally,
let E; (h) and E; (h) equal St respectively to obtain two new
equations whose solutions are

H ;
hi = —=—2 |, andh}, = [ ——| .
ol 5 and ez [C2(2p+1)] ©)

Then we regard U; = [h, h;,] as the approximation of U,
when h{, < h;,. Taking the situation of p=C, =C,=Tas an

example, the above process is shown in Figure 2.

3. Relationship between U, and U;

From the above definitions we find: as step size h decreases,
E(h) initially monotonically decreases to its lowest point
(H.E,.) before monotonically increasing; E; (h) is a monoton-
ically decreasing function, whereas E (h) is a monotonically
increasing function of h, and their intersection is (H, E )it
is easy to prove that when h < H, E; (h)>E(h) is always true,

and when h > H, E; (h)>E(h) is true. Given these, we have:

When g, > E ., h,, <hy, <H<h, <h,;

min’ "'t 1
13 * * .
wheno, =E . h, =hy =H=h, =h,;
< . * *
when o, <E_ ., h,, andh , donotexist, and h;, > h{,,

which does not conform to the definition of U;.

From the statements above we know that U; < U, when
§,>E . ,andU;=U,={Hwhen§,=E_ ;however, when
§,<E_._, both U, and U; are empty sets. These results indi-
cate that U; € U, is always true, which suggests that U;
is suitable for serving as an approximate interval U, In

min’



Downloaded by [Beijing Normal University] at 18:53 16 November 2017

10 /
/
/
U, /
A VA
B N S— _
- 7
5, Y, /
/
/
/
10° 1
10" 10° 10’
h

Figure 2. Relation diagram of the IES U, and its approximate
interval Uy

Notes: The solid curve denotes E(h) = h=%5+h; the grey solid line denotes £, (h)
= h™0%; the black solid line denotes E,(h) = h; the asterisk denotes (h___, E_ )

cross’ " cross

the grey dashed line denotes E; (h) = 1.5h=%%; the black dashed line denotes
E; (h) = 3h; and the black solid dot denotes (H, E . )

min’*

addition, to obtain a non-empty set U}, we suppose that
St >E_ . in the following discussion.

Next, we estimate the error of the approximation U;
with respect to U,. For this purpose, let A, , = |h{,~h,,| and
A, =|h;;=h,,|. Assuming that 5, > E_ , the relative errors
of hi,and h, with respect to h, , and h, , are respectively

2
1 . -2
|80 /hys| = (1 +—2p> (1+ K70 /C,) " =1,

—1- (cnh;;"*"‘” + 1);(2p + 1)
(7)

and

At,Z /ht,Z

Obviously, h, , € [0, Hl and h,, € [H, =) when 6,2E_ and
when hr'1 e [0, H], |At,1/hr,1| decreases monotonically with
increasing hm' and when hrl2 € [H, o), |Ar'2/ht12| increases

monotonically with increasing h, ,. These lead to

— 2 _ i =
osShL,JEH Bua/hy| = A +1/2p)7 =1, oslhr,,]sz A”/h”| O
H;h':‘ZEm |Ar,2/hr,2 =1-@p+1)7"" Hﬁiltlioo Bia/his| = 0.
(8)

Equation (8) indicates that |A,,/h, .| (or |A,,/h,,|) arrives
at its infimum zero when ht’1 (or ht,z) equals H, and both
supremums of |A,/h,.| and |A, /h,,| are only relevant to
the numerical method order p. Table 1 lists the values of
the supremums for p values of 1to 10; both of these supre-
mums tend to decrease with increasing p.
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Table 1. Supremums of relative errors |A, \/h, .| and |A, ,/h, ,| with
different choices of the numerical method order p.

P sup (A, /ht’1 sup Arlz/hm‘

0<h,, <H H<h,,<oo
1 1.25 0.67
2 0.56 0.55
3 0.36 0.48
4 0.27 0.42
5 0.21 0.38
6 0.17 0.35
7 0.15 0.32
8 0.13 0.30
9 0.11 0.28
10 0.10 0.26
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Figure 3. Schematic representation of the variations in the IES
U, (solid line) and its approximate interval U; (dotted line) with
increasing integration time t.

4. Variations in U, and U;" with increasing
integration time t

First, we investigate the variation in U; with increasing t.
Given Equation (6) and considering that &, = 5/C(t) -Ne,
monotonically decreases with t (Li, Zeng, and Chou 2001),
h{, increases monotonically and h;, decreases mono-
tonically with increasing t. That is, as the integral time t
increases, the length of the interval U; gradually shortens,
and eventually becomes a point, which is the OS. This helps
to explain the profile shape of the IES in Figure 1.

We next discuss the relationship between U, and U; as
tincreases. We denote the MECT by T, and from Li, Zeng,
and Chou (2001),

In +t,. (9

T=—
I c,(0+1/2p)/ VH + Ney,

Itis easy to prove that (gr—Emm)/(T—t)>O. From the analysis
in section 3, U/ c U, fort<T,U,=U;={H} fort =T, and
both U, and U; are empty sets for t > T. Figure 3 shows
a schematic representation of the variations in U, and U;
with increasing t.
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5. Conclusion and prospection

The unified estimation in Equation (1) for the total error
of the numerical solutions for nonlinear ODEs is used
here to give a general formula, Equation (6), for deter-
mining U, which is an approximation of the IES U,. The
analyses given in sections 3 and 4 show that if the error
limit 6 satisfies § = CO(E,,, + Ne(o)), and if the integration
time t is not greater than the MECT T, there will always be
U; € U, otherwise, both U,and U; are empty sets. This result
indicates that U is suitable for approximating the interval
U, In addition, formulae for the relative error of U; with
respect to U, are given, and numerical results suggest that
the supremums of the relative errors tend to decrease with
increasing numerical method order p. Finally, the varia-
tionin U,and U; with increasing integral time t are studied
(Figure 3) and used to explain the profile shape of the IES
(Figure 1) in Li, Zeng, and Chou (2000).

For the IES, this article only studies nonlinear systems
of ODEs. Further research is expected to consider complex
PDEs and would aid in choosing an effective step size in
numerical computation. In addition, the use of a higher
order scheme such as the Taylor Series Method (Wang, Li,
and Li 2012) in obtaining a reliable solution could effec-
tively reduce computation time when giving a fixed step
size. Thus, the method of applying the IES is not the only
choice to compute ODEs.
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